skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taherinejad, Nima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stochastic computing (SC) is an alternative computing paradigm that possesses data in the form of long uniform bit-streams rather than conventional compact weighted binary numbers. SC is fault-tolerant and can compute on small, efficient circuits, promising advantages over conventional arithmetic for smaller computer chips. SC has been primarily used in scientific research, not in practical applications. Digital sound source localization (SSL) is a useful signal processing technique that locates speakers using multiple microphones in cell phones, laptops, and other voice-controlled devices. SC has not been integrated into SSL in practice or theory. In this work, for the first time to the best of our knowledge, we implement an SSL algorithm in the stochastic domain and develop a functional SC-based sound source localizer. The developed design can replace the conventional design of the algorithm. The practical part of this work shows that the proposed stochastic circuit does not rely on conventional analog-to-digital conversion and can process data in the form of pulss-width-mudulated (PWM) signals. 
    more » « less
  2. Sorting data is needed in many application domains. Traditionally, the data is read from memory and sent to a general-purpose processor or application-specific hardware for sorting. The sorted data is then written back to the memory. Reading/writing data from/to memory and transferring data between memory and processing unit incur significant latency and energy overhead. In this work, we develop the first architectures for in-memory sorting of data to the best of our knowledge. We propose two architectures. The first architecture is applicable to the conventional format of representing data, i.e., weighted binary radix. The second architecture is proposed for developing unary processing systems, where data is encoded as uniform unary bit-streams. As we present, each of the two architectures has different advantages and disadvantages, making one or the other more suitable for a specific application. However, the common property of both is a significant reduction in the processing time compared to prior sorting designs. Our evaluations show on average 37 × and 138 × energy reduction for binary and unary designs, respectively, compared to conventional CMOS off-memory sorting systems in a 45nm technology. We designed a 3 × 3 and a 5 × 5 Median filter using the proposed sorting solutions, which we used for processing 64 × 64 pixel images. Our results show a reduction of 14 × and 634 × in energy and latency, respectively, with the proposed binary, and 5.6 × and 152 × 10 3 in energy and latency with the proposed unary approach compared to those of the off-memory binary and unary designs for the 3 × 3 Median filtering system. 
    more » « less
  3. null (Ed.)
    Multiply-accumulate (MAC) operations are common in data processing and machine learning but costly in terms of hardware usage. Stochastic Computing (SC) is a promising approach for low-cost hardware design of complex arithmetic operations such as multiplication. Computing with deterministic unary bit-streams (defined as bit-streams with all 1s grouped together at the beginning or end of a bit-stream) has been recently suggested to improve the accuracy of SC. Conventionally, SC designs use multiplexer (MUX) units or OR gates to accumulate data in the stochastic domain. MUX-based addition suffers from scaling of data and OR-based addition from inaccuracy. This work proposes a novel technique for MAC operation on unary bit-streamsthat allows exact, non-scaled addition of multiplication results. By introducing a relative delay between the products, we control correlation between bit-streams and eliminate OR-based addition error. We evaluate the accuracy of the proposed technique compared to the state-of-the-art MAC designs. After quantization, the proposed technique demonstrates at least 37% and up to 100% decrease of the mean absolute error for uniformly distributed random input values, compared to traditional OR-based MAC designs. Further, we demonstrate that the proposed technique is practical and evaluate area, power and energy of three possible implementations. 
    more » « less